Rationale for tolerable upper intake level for zinc

Sonja Y. Hess, PhD University of California, Davis

Outline

- Importance of zinc in human body
- Overview of terminology
- Rationale for upper intake level for zinc as recommended by the US Institute of Medicine (2001)

Biology of zinc

- Zinc participates in all major biochemical pathways in body
- Associated with >100 metalloproteins, including transcription factors
- Nucleic acid, amino acid, protein biosynthesis, including specific hormones like insulin, adrenal corticosteroids, testosterone
- Deficiency produces generalized impairment of multiple functions

Biology of zinc

- Especially important for cells with rapid turnover
 - Immune system
 - Intestinal mucosa
- Increased requirements during rapid growth

Consequences of zinc deficiency

- Immuno-dysfunction, increased morbidity, mortality
- Impaired growth
- Adverse pregnancy outcomes
- Abnormal neuro-behavioral development

Definition of EAR and UL

- Estimated Average Requirement (EAR)
 - Usual daily nutrient intake that meets the needs of 50% of healthy individuals in a particular sex & lifestage group
 - Used to estimate prevalence of inadequate intakes
- Tolerable Upper Intake level (UL)
 - Highest usual daily nutrient intake level likely to pose no risk of adverse health effects for almost all individuals in a particular sex & life-stage group
 - Used to estimate prevalence of excessive intakes

LOAEL & NOAEL

- Lowest Observed Adverse Effect Level (LOAEL)
- No Observed Adverse Effect Level (NOAEL)

Framework for multiple nutrient reference levels

Four possible levels:

EAR: average nutrient requirement

LRNI - Deficient level: 2SD below EAR (probably below needs of almost all individuals (UK))

RDA/RNI: 2SD above EAR. (meets needs of 97-98% population)

UL - Tolerable upper level: risk of excessive intakes very low, possibly affecting 3% population

Different available recommendations for safe upper levels of zinc intake

- IZiNCG (2004): provide EARs; NOAEL for Zn
 - EAR for mixed/refined vegetarian diets; Phy:Zn: 4 to 18
 - OR unrefined cereal-based diets; Phy:Zn > 18
- WHO (2005): give EARs & UL's
 - EAR based on three levels of Zn bioavailability
- Country-specific EARs & ULs if available
 - eg: IOM DRV's; UK DRI's etc
 - Bioavailability: based on habitual diets

Hazard identification

- Adverse effects associated with chronic intake of supplemental zinc include:
 - Suppression of immune response
 - Decrease in high-density lipoproteins cholesterol (HDL)
 - Reduction of copper status
- No data indicating adverse interactions between zinc and other nutrients when zinc is found in food.

Identification of LOAEL for adults

- Based on results from Yadrick et al (1989):
 - 18 healthy women (aged 18 to 40 yrs)
 - 50 mg/d supplemental zinc for 10 weeks
 - Dietary zinc intake estimated at 10 mg/d (based on results from 3rd NHANES Study)
- Significant reduction of ESOD activity
- > LOAEL at 60 mg zinc /day
- Support for LOAEL of 60 mg/d provided by other studies (Fischer et al, 1984)

Derivation of UL for adults

 Extrapolation from LOAEL to UL with uncertainty factor (UF) of 1.5

> Zinc UL for adults ≥ 19 yrs: 40 mg/d of zinc

Identification of NOAEL for infants

- Based on results from Walravens & Hambidge (1976):
 - 68 healthy full-term infants
 - Control grp: Formula with 1.8 mg zinc/L
 - Suppl grp: Formula with 5.8 mg zinc/L
 - Duration: 6 months
- No change in copper status
- Consideration of average intake of human milk (0.78 L/d) for infants aged 0-6 months
- NOAEL at 4.5 mg zinc / day

Derivation of UL for infants

 Given that no adverse effects at 4.5 mg/d, uncertainty factor (UF) set at 1.0

```
Zinc UL for infants:
```

```
0-6 months : 4 mg/d of zinc
```

7-12 months: 5 mg/d of zind

Derivation of UL for children and adolescents

- No adverse effects of zinc in children and adolescent could be found
- Adjustment of UL for older children based on relative body weight
- Zinc UL for children:

```
1-3 \text{ yrs} : 7 \text{ mg/d of zinc}
```

4-8 yrs : 12 mg/d of zinc

9-13 yrs $\,:\,$ 23 mg/d of zinc

Zinc UL for adolescents 14-18 yrs: 34 mg/d of zinc

UL for pregnant and lactating women

- Inadequate data to justify a different UL for pregnant and lactating women
- Same UL as for non-pregnant and nonlactating women
- Zinc UL for pregnant and lactating women:

```
14-18 yrs : 23 mg/d of zinc
```

 $19 - 50 \, \text{yrs} : 40 \, \text{mg/d of zinc}$

Risk characterization

- Adverse effects resulting from excess zinc intake from food and supplements appears to be low at above described levels.
- The UL applies to total zinc intake from food, water and supplements (including fortified foods)
- The UL is not meant to apply to individuals who are receiving zinc for treatment purposes

Today's question

Is it time to re-assess the recommended UL for zinc?