

ZINC DEFICIENCY, IZINCG AND THE ZINC FORTIFICATION TASK FORCE

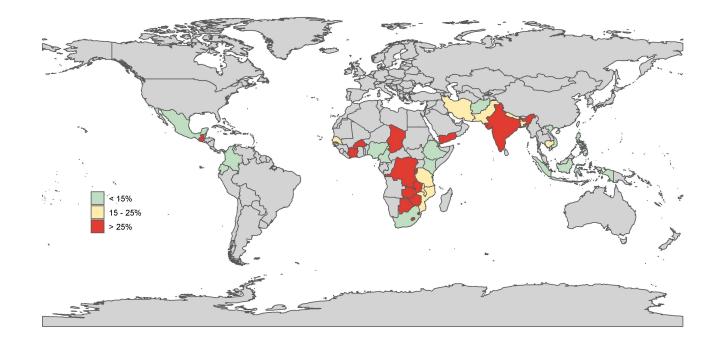
Christine McDonald, ScD, MSc Director of IZiNCG & Associate Professor, UCSF

December 5, 2023

ZINC 101

Biological role:	 Catalyst, structural element or regulatory ion in several metabolic processes, including DNA transcription, gene expression, signal transduction, and endocrine function Important for immune function, reproductive health, child growth and development
Groups vulnerable to deficiency:	 Infants, young children, pregnant women
Dietary sources:	 Animal-source foods (organ meats and flesh from mammals, poultry and seafood are highest in zinc) Fortified foods Lentils, beans, seeds (note that phytate in plant sources of zinc can impair absorption)
Recommended indicators of Zn status:	 Dietary zinc intake HAZ of growing children Plasma/serum zinc concentrations

2


ADVERSE OUTCOMES ASSOCIATED WITH ZINC DEFICIENCY

	Attributable deaths with UN prevalences*	Proportion of total deaths of children younger than 5 years	Attributable deaths with NIMS prevalences†	Proportion of total deaths of children younger than 5 years	
Fetal growth restriction (<1 month)	817 000	11-8%	817 000	11-8%	
Stunting (1–59 months)	1017000*	14-7%	1179 000†	17-0%	
Underweight (1–59 months)	999 000*	14-4%	1180 000†	17-0%	
Wasting (1-59 months)	875 000*	12-6%	800 000†	11-5%	
Severe wasting (1–59 months)	516000*	7-4%	540 000†	7-8%	
Zinc deficiency (12–59 months)	116 000	1.7%	116 000	1.7%	
Vitamin A deficiency (6–59 months)	157000	2-3%	157 000	2-3%	
Suboptimum breastfeeding (0–23 months)	804000	11-6%	804000	11-6%	
Joint effects of fetal growth restriction and suboptimum breastfeeding in neonates	1348000	19-4%	1348000	19-4%	
Joint effects of fetal growth restriction, suboptimum breastfeeding, stunting, wasting, and vitamin A and zinc deficiencies (<5 years)	3097000	44-7%	3149000	45-4%	
Data are to the nearest thousand. *Prevalence estimates from the UN. †Prevalence estimates from Nutrition Impact Model Study (NIMS).					

Black RE et al. Lancet 2013

- fincidence of diarrhea and respiratory infections in children
- risk of child stunting
- ▶ ↑ risk of preterm birth
- ▶ ↑ risk of child mortality

ZINC DEFICIENCY IS A PUBLIC HEALTH PROBLEM IN 40 LMICs

- I8 countries with an estimated prevalence of inadequate zinc intake > 25% and prevalence of stunting > 20%
- I8 countries with a prevalence of low plasma zinc concentration among WRA or PSC > 20%
- ► 4 countries meeting all 3 criteria

WHAT IS IZINCG?

International Zinc Nutrition Consultative Group

- An international group whose primary objectives are to promote and assist efforts to reduce the global burden of zinc deficiency.
- IZiNCG focuses on the identification, prevention and treatment of zinc deficiency in the most vulnerable populations in low-income countries.

WHAT DOES IZINCG DO?

TECHNICAL ASSISTANCE, INTERPRETATION & DISSEMINATION OF RESEARCH

Applied Research	Programmatic & Policy Guidance		
 RCT of different doses, forms, and frequencies of zinc supplementation in young Bangladeshi infants 	 Technical briefs posted to IZiNCG website 		
Efficacy trial of multiply-fortified salt among WRA	 FAO/INFOODS/IZiNCG global food composition database for phytate & evaluation of lab methods for phytate assessment 		
 Kinetic modeling for zinc metabolism in stunted, zinc- deficient infants 	 Incorporation of zinc deficiency data into WHO Micronutrient Database 		
 Comparison of laboratory methods for analysis of plasma zinc 	 Working group for the promotion of biomarkers of micronutrient status in national nutrition/health surveys 		
BRINDA2: Adjusting plasma/serum zinc for inflammation	Zinc Fortification Task Force		
 Systematic review of tolerable upper intake level in young children 	 Communications, advocacy, fundraising 		

ZINC FORTIFICATION TASK FORCE

Goal: To assess the efficacy and effectiveness of zinc fortification interventions, and to identify opportunities to enhance impact.

Task force members:

 GAIN, FFI, Nutrition International, IZiNCG (UCSF, BMGF, UC Davis, Johns Hopkins)

Summary of key activities:

- Systematic review of LSFF with zinc
- Key informant interviews to identify barriers to and enablers of LSFF with zinc
- Advocacy resources: Call to Action, Country Briefs
- Analysis of FBS data to assess potential impact of LSFF with zinc

KEY RESOURCES

2020

Article

Enablers and https://www.mdpi.com/journal/nutrients (perience from 10 Low- and Middle-Income Countries with Mandatory **Large-Scale Food Fortification**

202

Ann Tarini ^{1,}*⁽⁰⁾, Mari S. Manger ^{2,3}, Kenneth H. Brown ^{3,4}, Mduduzi N. N. Mbuya ^{3,5}⁽⁰⁾, Laura A. Rowe ^{3,6}, Frederick Grant ^{3,7}, Robert E. Black ^{3,8} and Christine M. McDonald ^{2,3,9}

Effects of Foods Fortified with Zinc, Alone or Cofortified with Multiple Micronutrients, on Health and Functional Outcomes: A Systematic Review and Meta-Analysis

Becky L Tsang,^{1,2} Erin Holsted,^{1,3} Christine M McDonald,^{1,4,5} Kenneth H Brown,^{1,6} Robert Black,^{1,7} Mduduzi NN Mbuya,^{1,8} Frederick Grant,^{1,9} Laura A Rowe,^{1,2} and Mari S Manger^{1,4}

¹IZINCG Fortification Task Force; ²Food Fortification Initiative, Atlanta, GA, USA; ³Rollins School of Public Health, Emory University, Atlanta, GA, USA; ⁴ International Zinc Nutrition Consultative Group, Oakland, CA, USA; ⁵ Department of Pediatrics, University of California San Francisco School of Medicine, San Francisco, CA, USA; ⁶Department of Nutrition and Institute for Global Nutrition, University of California, Davis, CA, USA; ⁷Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; 8 Global Alliance for Improved Nutrition, Washington, DC, USA; and 9 Helen Keller International, Phnom Penh, Cambodia

2022 **GUIDELINE: FORTIFICATION OF** WHEAT FLOUR WITH **VITAMINS AND** MINERALS **AS A PUBLIC HEALTH STRATEGY**

"Fortification of wheat flour with zinc may be used as a public health strategy to improve serum/plasma zinc status of populations"

World Health Organization

🔥 UCDAVIS Institute for Global Nutrition

THANK YOU!

www.izincg.org

christine.mcdonald@ucsf.edu