Viewing entries tagged
Biochemical assessment

Portable X-ray fluorescence of zinc applied to human toenail clippings

Portable X-ray fluorescence of zinc applied to human toenail clippings

Could toenail zinc content assessed by portable X-ray fluorescence be a field friendly biomarker of zinc status? Professor David Fleming of Mount Allison University describes where the science is at.

Zinc deficiency is a widespread problem which has been associated with a variety of serious health effects. Diagnosing zinc deficiency at the individual level is, unfortunately, a somewhat thorny issue. Currently, there is no single method of determining zinc status which is both simple and reliable. The best option is probably the measurement of plasma (or alternatively serum) zinc concentration [1,2]. This approach, however, requires a sequence of non-trivial steps pertaining to the sample acquisition, storage, and analysis (usually at a distant lab). Other reliable or potentially useful biomarkers of zinc status have been noted, including zinc concentration in urine and hair [1,2]. These approaches also have drawbacks.

Zinc concentration in nail was recently described as an “emerging biomarker” by the Biomarkers of Nutrition for Development (BOND) zinc expert panel [2]. This designation indicates that nail zinc concentration has a theoretical association with zinc status, but requires further study. This need for additional development was reinforced in a Technical Brief from IZiNCG, which provided an overview of assessing zinc exposure using hair or nail zinc [3]. 

Toenail clippings ready for measurement by portable X-ray fluorescence (Photo: David Fleming)

Toenail clippings ready for measurement by portable X-ray fluorescence (Photo: David Fleming)

We recently conducted a study involving the measurement of zinc concentration in toenail clippings using two different methods: portable X-ray fluorescence (XRF) and inductively coupled plasma-mass spectrometry (ICP-MS) [4]. Of the two methods, portable XRF is a relatively new approach to zinc biomarker analysis, while ICP-MS may be considered a “gold standard”. We measured single toenail clippings from 60 different individuals living in Atlantic Canada (the population was drawn from the Atlantic PATH cohort [5]). The clippings were measured first by portable XRF, a non-destructive technique, and then by ICP-MS. The population average zinc concentration was found to be 85 µg/g from ICP-MS. The portable XRF technique was very sensitive to detecting zinc in the clippings and provided a reasonable estimate of zinc concentration. Using the XRF output spectrum to determine a normalized zinc signal, we found a correlation coefficient r = 0.68 between the XRF results and the ICP-MS zinc concentrations. Looking forward, correlation between the two methods might be improved by measuring multiple points on each clipping when using XRF – in our study, only a single point on each clipping was assessed by XRF.

Single toenail clipping in portable X-ray fluorescence instrument (Photo: David Fleming)

Single toenail clipping in portable X-ray fluorescence instrument (Photo: David Fleming)

Single toenail clipping (Photo: David Fleming)

Single toenail clipping (Photo: David Fleming)

The portable XRF approach presents a number of potential advantages for the analysis of zinc concentration in nail clippings. Measurements could be made in a field setting and results provided quickly. Sample preparation is minimal, operating conditions are simple, and the technique is relatively inexpensive. If the correlation of XRF results with ICP-MS concentrations could be improved, portable XRF might therefore be an especially attractive approach for assessing zinc concentration in nail clippings. The other critical issue here, of course, is whether zinc concentration in nail is truly representative of an individual’s zinc status. That remains an open question which will require additional study to resolve. If zinc concentration in nail is eventually upgraded from “emerging biomarker” to “useful biomarker”, we anticipate that portable XRF will receive a great deal of attention and become a potentially important component of public health initiatives targeting zinc deficiency.

 

References

[1] N.M. Lowe, K. Fekete, T. Decsi, Methods of assessment of zinc status in humans: a systematic review, Am. J. Clin. Nutr. 89 (2009) 2040S-2051S.

[2] J.C. King, K.H. Brown, R.S. Gibson, N.F. Krebs, N.M. Lowe, J.H. Siekmann, D.J. Raiten, Biomarkers of nutrition for development (BOND) – zinc review, J. Nutr. 146 (2016) 858S-885S.

[3] International Zinc Nutrition Consultative Group (IZiNCG) Technical Brief No. 8, Assessing population zinc exposure with hair or nail zinc (2018), https://www.izincg.org/technical-briefs

[4] D.E.B. Fleming, S.L. Crook, C.T. Evans, M.N. Nader, M. Atia, J.M.T. Hicks, E. Sweeney, C.R. McFarlane, J.S. Kim, E. Keltie, A. Adisesh, Portable X-ray fluorescence of zinc applied to human toenail clippings, J. Trace Elem. Med. Biol. 62 (2020) 126603.

[5] E. Sweeney, Y. Cui, V. DeClercq, P. Devichand, C. Forbes, S. Grandy, J.M.T. Hicks, M. Keats, L. Parker, D. Thompson, M. Volodarsky, Z.M. Yu, T.J.B. Dummer, Cohort profile: the Atlantic partnership for tomorrow’s health (Atlantic PATH) study, Int. J. Epidemiol. 46 (2017) 1762-1763i.

IZiNCG Practical Tips for collecting blood in the field for assessment of plasma or serum zinc concentration

IZiNCG Practical Tips for collecting blood in the field for assessment of plasma or serum zinc concentration

The second edition of IZiNCG Practical Tips: Collecting blood in the field for assessment of plasma or serum zinc concentration is now available on our website.

The document briefly covers the following topics:

  • Precautions to prevent transmission of infectious agents when handling blood samples 

  • Practices and supplies to avoid zinc contamination of samples 

  • Tips for blood collection technique 

  • Tips for processing samples 

  • Tips for aliquoting of samples in the field laboratory 

  • Tips for sample analyses 

  • Information on reference laboratories

  • Tips for statistical analyses 

  • List of trace element-free blood collection supplies 

  • Image examples of field laboratory hoods

  • Example laboratory protocols for the analysis of plasma/serum zinc by flame atomic absorption spectrophotometry and inductively coupled plasma–optical emission spectrometry (ICP-OES) 

Please contact IZiNCG with any questions or comments regarding this brief.

New IZiNCG technical brief: The value of measuring plasma or serum zinc concentrations in national surveys

New IZiNCG technical brief: The value of measuring plasma or serum zinc concentrations in national surveys

“Micronutrient deficiencies are estimated to impact a significant number of people around the world, but there remains far too little information on micronutrient status and deficiencies. More essential information and surveillance need to be gathered to make substantial progress on global targets.” 

Global Nutrition Report 2018

There is an urgent need for more and better data on the zinc status of vulnerable populations to effectively target and monitor zinc intervention programs. IZiNCG’s new Technical Brief no. 9 outlines the value of measuring plasma/serum zinc concentration in national nutrition or health-related surveys. If a population is considered at high-risk of zinc deficiency based on inadequacy of zinc in the food supply or a high prevalence of child stunting, IZiNCG recommends that plasma/serum zinc be measured in vulnerable groups.

We are pleased that plasma/serum zinc data are now included in the World Health Organization’s Vitamin and Mineral Nutrition Information System Micronutrient Database and have partnered with the Micronutrient Forum to initiate a working group to promote the inclusion of micronutrient biomarkers in large-scale surveys. 

For more information about the measurement of plasma or serum zinc concentrations, refer to previous IZiNCG Technical Briefs and Technical Documents, and the Biomarkers of Nutrition for Development (BOND) - Zinc Review.